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Noise vs Computational unpredictability in dynamics

Predicting Natural Phenomena: can we compute the
future?

• Where will the pendulum be tomorrow at noon?

• Is it gonna rain next week ?

• What is the probability for rain next week?

More generally

Given an evolving system, can we compute its long term
prospects?
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Noise vs Computational unpredictability in dynamics

Given a dynamical system (X ,T )

Two (at least) fundamental barriers to our ability to predict the future:

• Chaotic behavior : + approximation ⇒ unpredictability of individual
trajectories – is a prevalent situation

Solution: focus on more global, asymptotic objects: attractors/repellers,
invariant measures.

• Turing Completeness : rich systems can simulate universal computation
⇒ uncomputable features

but... is this a prevalent situation? does it occur with positive probability?
does it persist after small perturbations?
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Noise vs Computational unpredictability in dynamics

Dynamical systems and Natural Phenomena: mathematical
models

A dynamical system is a space of states X together with a map
T : X → X .

Idea: starting at state x0, the state of the system after n units of time is:

T n(x0) = T ◦ T ◦ T · · · ◦ T (x0) (n times).

A typical scenario can be roughly described as follows:

• phase space X can be divided into regions Bi .

• trajectories starting in Bi approach a same “attractor”

• any probability distribution supported in the region evolves towards
an invariant one, supported on the attractor.

• The “frontiers” between regions (basins) are invariant “repellers”
supporting other invariant measures.
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Some examples

• Lorenz equations

• Polynomials on the complex plane (Julia sets: repellers)

• symbolic systems: cellular automata, subshifts

• piece-wise linear transformations
• Neural networks – agent systems (high dimensional)
• Billiards, ray-tracing (low-dimensional)
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Computation and Dynamical Systems: interactions
Dynamical systems as computing machines

How much computational power does a dynamical system have?

Some examples:

• Piece-wise linear maps in two dimensions ≡ full Turing-power
(Moore, Koiran et al.)

• Piece-wise linear maps in one dimension ≡ push-down automata
(Moore, Koiran)

• Unimodal 1D-maps are not universal (Kurka).

• Tilings of the plane ≡ full-turing power (Berger, Robinson)



Noise vs Computational unpredictability in dynamics

Computation and Dynamical Systems: interactions
Dynamical systems as computing machines

How much computational power does a dynamical system have?

Some examples:

• Piece-wise linear maps in two dimensions ≡ full Turing-power
(Moore, Koiran et al.)

• Piece-wise linear maps in one dimension ≡ push-down automata
(Moore, Koiran)

• Unimodal 1D-maps are not universal (Kurka).

• Tilings of the plane ≡ full-turing power (Berger, Robinson)



Noise vs Computational unpredictability in dynamics

Computation and Dynamical Systems: interactions
Dynamical systems as computing machines

How much computational power does a dynamical system have?

Some examples:

• Piece-wise linear maps in two dimensions ≡ full Turing-power
(Moore, Koiran et al.)

• Piece-wise linear maps in one dimension ≡ push-down automata
(Moore, Koiran)

• Unimodal 1D-maps are not universal (Kurka).

• Tilings of the plane ≡ full-turing power (Berger, Robinson)



Noise vs Computational unpredictability in dynamics

Computation and Dynamical Systems: interactions
Dynamical systems as computing machines

How much computational power does a dynamical system have?

Some examples:

• Piece-wise linear maps in two dimensions ≡ full Turing-power
(Moore, Koiran et al.)

• Piece-wise linear maps in one dimension ≡ push-down automata
(Moore, Koiran)

• Unimodal 1D-maps are not universal (Kurka).

• Tilings of the plane ≡ full-turing power (Berger, Robinson)



Noise vs Computational unpredictability in dynamics

Computation and Dynamical Systems: interactions
Dynamical systems as computing machines

How much computational power does a dynamical system have?

Some examples:

• Piece-wise linear maps in two dimensions ≡ full Turing-power
(Moore, Koiran et al.)

• Piece-wise linear maps in one dimension ≡ push-down automata
(Moore, Koiran)

• Unimodal 1D-maps are not universal (Kurka).

• Tilings of the plane ≡ full-turing power (Berger, Robinson)



Noise vs Computational unpredictability in dynamics

Computation and Dynamical Systems: interactions
Computability in dynamical systems

What dynamical features can be computed ?

Positive results:

• Most Julia sets are computable (Rettinger, Weihrauch, Braverman,
Yampolsky)

• Smale’s Horseshoe is computable (Graca, Zhong, Buescu)

• Local stable and unstable manifolds in hyperbolic systems are
computable (Graca, Zhong, Buescu)

• Invariant measures are computable for:
• Piece-wise expanding maps and hyperbolic systems (Galatolo,

Hoyrup, R.)
• Harmonic measure on Julia sets (Binder, Braverman, Yampolsky, R.)

• For ergodic systems there exists computable generic points
(Avigad, Gerhardy, Towsner, Gacs, Galatolo, Hoyrup, R.).
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Computation and Dynamical Systems: interactions
Computability in dynamical systems

What dynamical features can be computed ?

Negative results:

• Reachability problems are undecidable (Asarin, Bournez, Koiran,
Blondel)

• Entropy is uncomputable for piece-wise linear maps in dimension 4
(Koiran) and for cellular automata (Kari)

• Global stable and unstable manifolds are not computable in general
(Graca, Ning, Buescu)

• There exists uncomputable Julia sets (Braverman, Yampolsky)

• There exists computable systems without computable invariant
measures (Galatolo, Hoyrup, R.).
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Computation and Dynamical Systems: interactions
Complexity in dynamical systems

What is the complexity of computing a given dynamical feature?

Some examples:

• Hyperbolic Julia sets are poly-time computable (Weihrauch,
Rettinger, Braverman)

• Cremer Julia sets are arbitrarily complex (Braverman, Yampolsky)

• more examples in the next talk...

• ...
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Noise vs Computational unpredictability in dynamics

What about physically plausible systems showing
uncomputable/intractable phenomena?

Notable fact: it appears that all the negative results are fragile in one
way or another.

Are there physically robust systems exhibiting Turing-universal power?

YES! my laptop ... but it would need unlimited storage (unlimited
physical space).

What about low-dimensional, compact systems?

Conjecture
Uncomputable/intractable phenomena cannot occur robustly in
“reasonably constrained” systems.
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Noise vs Computational unpredictability in dynamics

Our contribution
Uncomputablity is not robust

Given a system T , we consider a small random perturbation Tε of it.

Idea: x goes to T (x) and then disperses randomly with distribution
pε,T (x). Where pε,x → δx as ε→ 0.

Theorem A.(Braverman, Grigo, R.) Let T be a computable system over
a compact subset X of Rd . Assume pε,T (x) is uniform on the ε-ball
around T (x). Then, for almost every ε > 0, the ergodic measures of the
perturbed system Tε are all computable.

Remarks:

• The noise does not need to be uniform, absolute continuity is
enough.

• Intuitively, this says that the uncomputable phenomena is broken by
the noise.
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Our contribution
Intractability is not robust

Theorem B. (Braverman, Grigo, R.) Suppose the perturbed system Tε is
uniquely ergodic and the function T is poly-time computable. Then there
exists an algorithm A that computes µ with precision α in time
OT ,ε(poly( 1

α )).

Remarks:

• The upper bound is exponential in the number of precision bits.

• The algorithm can be implemented using poly(log( 1
α )) space.
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• Intuition: at scales below the noise level, the “computationally
simple” behavior takes over.
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Some details about the results
Statistical behavior: Invariant and ergodic masures

A probability (Borel) measure over X is invariant if the probability of
events do not change in time:

µ(T−1E ) = µ(E ) for every Borel set E .

Invariant measures correspond to equilibrium states of the system. The
ergodic measures are the ones that can not be decomposed:

For every invariant set E , either µ(E ) = 1 or µ(E ) = 1.
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Statistical behavior
Small random perturbations

Here X is a space on which Lebesgue measure can be defined. Consider a
family {pεx}x∈X ∈ M(X ) (a probability kernel) such that

pεx → δx as ε→ 0.

Definition
A random perturbation of T , Tε is a Markov Chain Xn, n = 0, 1, 2, ...
with transition probabilities P(A|x) = pεT (x)(A). Given µ ∈ M(X ), the

push forward of µ under Tε is defined by (Tεµ)(A) =
∫
X

P(A|x) dµ.

Definition
A probability measure µ on X is called an invariant measure of the
random perturbation Tε of T if Tεµ = µ.
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The space of measures

Let Minv denote the space of invariant probability measures.

• Minv is a compact, convex, non empty set,

• The extremal points are the ergodic measures,

• if Minv contains just one measure, then the system is called
uniquely ergodic.

Which invariant measures are computable ?
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Computability of probability measures

Let M(X ) := {Probability measures over X}.

If X is separable and complete, then so is M(X ). And it can be
metrized (Prokhorov distance ρ)

Let D := {Finite convex combinations of Dirac measures}.

Proposition
The triple (M(X ),D, ρ) is a computable metric space.

... so we have a notion of computable measure to work with.
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Computability of probability measures

A useful simple observation:

• The pushforward (or transition) operator P : µ→ Tεµ is
computable.

• If X is effectively compact, so is Minv .

• It follows that uniquely ergodic systems have a computable invariant
measure.
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Main proof ideas
Proof of Theorem A

Theorem A. If pε,T (x) is uniform on the ε-ball around T (x). Then, for
almost every ε > 0, the (finitely many) ergodic measures of the
perturbed system Tε are all computable.

Remarks:

• The requirement of being uniform can be relaxed to absolute
continuity.

• Tε can have at most finitely many ergodic measures.
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Main proof ideas
Proof of Theorem A

The result can essentially be obtained from the following observations:

• For all but countably many ε > 0, there exists open sets
A1, ...,AN(ε) such that for all i = 1, ...,N(ε):

(i) supp(µi ) ⊂ Ai and,
(ii) for every x ∈ Ai , µx = µi , where µx is the limiting distribution of Tε

starting at x .

• We can “explore” the space to algorithmically find regions Ai like
above.

• Restricted to each region, Tε is uniquely ergodic. Computability of
each measure now follows from compactness.
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Main proof ideas
Proof of Theorem B

Theorem B. Suppose the perturbed system Tε is uniquely ergodic and
the function T is polynomial-time computable. Then there exists an
algorithm A that computes µ with precision α in time OT ,ε(poly( 1

α )).

Remarks:

• The upper bound is exponential in the number of precision bits.

• Upon input α, the algorithm outputs a list {wa}a∈ζ of poly(1/α)
dyadic numbers representing the piece-wise constant function

A(α) =
∑
a∈ζ

wa1 {x ∈ a}

where P is a regular-size partition with poly(1/α) pieces.
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Main proof ideas
Proof of Theorem B

Idea: exploit the mixing properties P.

• Since P may not have a spectral gap, we construct a related
transition operator P that has the same invariant measure as P
while having a a spectral gap.

• Compute a finite matrix approximation Q of P s.t.:

i) Q has a simple real eigenvalue near 1
ii) the corresponding eigenvector ψ is nonegative and
iii) the density associated to ψ is L1-close to the stationary distribution

of P.
• Q corresponds (roughly) to a piece-wise constant approximation of
P on a finite partition ζ.

• Computing µ here means to have the vector ψ.
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Main proof ideas
Proof of Theorem C

Theorem C. Suppose the noise pεT (x)(·) is “nice”. Then the computation

of µ at precision δ < O(ε) requires time OT ,ε(poly(log 1
δ )).

Remarks:

• Here we actually prove that µ has a poly-time computable analytic
density. And therefore µ[0, x ] is poly-time computable.

• The noise kernel pε(y , x) is “nice” if there exists constants C > 0
and γ > 0 such that

|∂k2 pε(y , x)| ≤ C k! eγk for all k ∈ N and all x , y ∈ X .

• Thus, if ν ∈ M(X ), then the transition operator P is given by

Pν(dx) = ρ(x) dx , ρ(x) =

∫
X

pε(T (y), x)ν(dy) ,

• In particular, Pν(dx) has a density for any probability measure ν.
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Main proof ideas
Proof of Theorem C

Some observations on the previous proof:

• We approximated P by a finite matrix Q.

• in order to increase the precision α = 2−n, we had to increase the
resolution of ζ.

• The size of Q was exponential in n.

How to get rid of this exponential approximation?
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Main proof ideas
Proof of Theorem C

Solution:

• We use a fixed partition ζ that depends only on the noise
(diamζ < 1

eγ ).

• Instead of the “piece-wise constant”, we approximate P exactly on
each a ∈ ζ by a Taylor series.

• The regularity of the kernel implies the regularity of Pρ, for any
initial density ρ.

• This provides an “infinite” matrix representation for P, organized in
a fixed number of blocks.
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Main proof ideas
Proof of Theorem C

• We now can truncate the series representations and get a finite
matrix PN , corresponding to a finite approximation of P.

• PN can be iterated.

Figure: Graphical representation of the equation PN ρ
(t)
N = ρ

(t+1)
N .

• The size of PN depends linearly on the number n of precision bits !

• The invariant density π is computed by iterating PN ρ
(t)
N of any

initial density ρ sufficiently many times (also linear in n) and then
use the resulting vector and Taylor formula to compute π(x).
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Further work
How powerful can noisy systems be?

So... adding noise to the system may erase uncomputability
(intractability).

• How much power does it retain?

• How much memory does it have after the addition of noise?

• lower bounds? upper bounds?

• The system has a limited amount of robustly distinguishable states...

• Hard to formalize.
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